Reto Achermann SYSTEMS · RESEARCHER University of British Columbia

Summary

I am an operating system researcher with three years of post-graduate research and ten years of teaching experience. I make operating systems more secure, faster, and easier to develop by combining programming languages, formal methods, software synthesis, and hardware models.

Education

Doctor of Science, ETH Zurich

- Advisor: Prof. Timothy Roscoe
- Thesis Title: On Memory Addressing [pdf]

Master of Science in Computer Science, ETH Zurich

- Advisor: Prof. Timothy Roscoe
- Specialization: Distributed Systems. Grade: 5.8 / 6.0 (with distinction)
- Thesis Title: Message passing and bulk transport on heterogeneous multiprocessors [pdf]

Bachelor of Science in Computer Science, ETH Zurich

• Thesis Title: Barrelfish USB Subsystem [pdf]

Officer School Swiss Armed Forces, Swiss Government

· Leadership education, management, and conflict management.

Professional Experience

Postdoctoral Research Fellow

University of British Columbia – Systopia Lab

- Research in the intersection of operating systems, verification and software synthesis.
- · Mentored several students on their research projects and co-advised two students on their Honours thesis.
- Teaching: Lecturer for CS508 Graduate Operating Systems and CS436A Operating Systems Design and Implementation

Research Assistant

ETH ZURICH – SYSTEMS GROUP

- Research in operating systems and hardware specification
- · Mentoring multiple students in their Master's and Bachelor's thesis projects.
- Teaching: Leading tutorials / labs as a teaching assistant for multiple courses.

Intern VMware Research Group

VMware, Inc. – VMware Research Group

- Project: Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines.
- Design and implementation of page-table replication in the Linux kernel.

Intern Systems Software

HEWLETT-PACKARD LABS – SYSTEMS SOFTWARE RESEARCH GROUP

• Project: Consensus protocols and capabilities for the Machine.

Staff Officer (Captain)

SWISS ARMED FORCES - RADIO TRANSMISSION AND IT SERVICES.

- Planning and deployment of heterogeneous communication systems, IT systems and networks.
- Leading education modules and training exercises with up to 350 people.

November 2014 - February 2020 Zurich, Switzerland

September 2013 - October 2014 Zurich, Switzerland

September 2009 - September 2013

Zurich, Switzerland

June 2008 - September 2009 Switzerland

December 2020 - present

Vancouver (BC), Canada

November 2014 - November 2020

Zurich, Switzerland

June 2018 - September 2018

Palo Alto (CA), United States

September 2015 - December 2015

Palo Alto (CA), United States

June 2009 - November 2020

Switzerland

Teaching Experience

UNIVERSITY OF BRITISH COLUMBIA

Lecturer	Graduate Operating Systems (CPSC 508)	Winter Term 1, 2023
Lecturer	Operating Systems Design and Implementation (CPSC436A)	Winter Term 1, 2022
Lecturer	Operating Systems Design and Implementation (CPSC436A/CPSC538A)	Winter Term 2, 2021
Lecturer	Graduate Operating Systems (CPSC 508)	Winter Term 2, 2020
ETH ZURICH		
Teaching Assistant	Advanced Operating Systems (263-3800-00L) Systems Programming and Computer Architecture (252-0061-00L) Application-Oriented Programming (252-0840-02L) Introductory Programming in MATLAB (252-0840-01L) Parallel Programming (252-0024-00L) Data Modelling and Databases (252-0063-00L) Operating Systems and Networks (252-0062-00L)	2020,2019,2017 2019,2018,2017,2016,2014,2013 2019,2018 2017,2016 2015 2014 2013

Peer Reviewed Publications

Synthesizing Device Drivers with Ghost Writer	PLOS '23
Bingyao Wang, Sepehr Noorafshan, Reto Achermann and Margo Seltzer	2023
Sharding the State Machine: Automated Modular Reasoning for Complex Concurrent Systems	OSDI '23
Travis Hance, Andrea Lattuada, Reto Achermann , Alex Conway, Ryan Stutsman, Gerd Zellweger, Chris Hawblitzel, Jon Howell and Bryan Parno	2023
Why write address translation OS code yourself when you can synthesize it?	HotOS '23
Reto Achermann, Ilias Karimalis and Margo Seltzer	2023
Beyond isolation: OS verification as a foundation for correct applications	HotOS '23
Matthias Brun, Reto Achermann , Tej Chajed, Jon Howell, Gerd Zellweger and Andrea Lattuada	2023
Cache-Coherent Accelerators for Persistent Memory Crash Consistency	HotStorage '22
Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann , Gerd Zellweger and Ryan Stutsman	2022
Enzian: An Open, General, CPU/FPGA Platform for Systems Software Research	ASPLOS '22
David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija,	2022
Melissa Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso and Timothy Roscoe	
Fast Sparse Decision Tree Optimization via Reference Ensembles	AAAI '22
Hayden McTavish, Chudi Zhong, Reto Achermann , Ilias Karimalis, Jacques Chen, Cynthia Rudin and Margo Seltzer	2022
Generating Correct Initial Page Tables from Formal Hardware Descriptions	PLOS '21
Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Humbel, Timothy Roscoe and Daniel Schwyn	2021
Declarative Power Sequencing	ACM TECS Vol 20-5s
Jasmin Schult, Daniel Schwyn, Michael Giardino, David Cock, Reto Achermann and Timothy Roscoe	2021
NrOS: Effective Replication and Sharing in an Operating System	OSDI '21
Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann , Irina Calciu, Sanidhya Kashyap, Ryan Stutsman, Amy Tai and Gerd	2021
Zellweger	

Mmapx: Uniform Memory Protection in a Heterogeneous World	HotOS '21
Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Humbel, Timothy Roscoe and Daniel Schwyn	2021
Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis	ASPLOS '21
Ashish Panwar, Reto Achermann , Arkaprava Basu, Abhishek Bhattacharjee, K. Gopinath and Jayneel Gandhi	2021
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines	ASPLOS '20
Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe and Jayneel Gandhi	2020
Memory-Side Protection With a Capability Enforcement Co-Processor	ACM TACO Vol 16-1
Leonid Azriel, Lukas Humbel, Reto Achermann , Alex Richardson, Moritz Hoffmann, Avi Mendelson, Timothy Roscoe,	2019
Robert N. M. Watson, Paolo Faraboschi and Dejan Milojicic	
Physical Addressing on Real Hardware in Isabelle/HOL	ITP'18
Reto Achermann, Lukas Humbel, David Cock and Timothy Roscoe	2018
Formalizing Memory Accesses and Interrupts	MARS'17
Reto Achermann, Lukas Humbel, David Cock and Timothy Roscoe	2017
Towards Correct-by-Construction Interrupt Routing on Real Hardware	PLOS'17
Lukas Humbel, Reto Achermann , David Cock and Timothy Roscoe	2017
Separating Translation from Protection in Address Spaces with Dynamic Remapping	HotOS '17
Reto Achermann, Chris Dalton, Paolo Faraboschi, Moritz Hoffmann, Dejan Milojicic, Geoffrey Ndu, Alexander	2017
Richardson, Timothy Roscoe, Adrian L. Shaw and Robert N. M. Watson	
Machine-aware Atomic Broadcast Trees for Multicores	OSDI'16
Stefan Kaestle, Reto Achermann , Roni Haecki, Moritz Hoffmann, Sabela Ramos and Timothy Roscoe	2016
SpaceJMP: Programming with Multiple Virtual Address Spaces	ASPLOS '16
Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Achermann , Paolo Faraboschi, Wen-mei Hwu,	2016
Timothy Roscoe and Karsten Schwan	
Shoal: Smart Allocation and Replication of Memory for Parallel Programs	USENIX ATC '15
Stefan Kaestle, Reto Achermann , Timothy Roscoe and Tim Harris	2015
Not Your Parents' Physical Address Space	HotOS'15
Simon Gerber, Gerd Zellweger, Reto Achermann , Kornilios Kourtis, Timothy Roscoe and Dejan Milojicic	2015

Other Publications

OSmosis: Modeling and Building Flexible OS Isolation Mechanisms (Poster)	SOSP '23:Poster Sessions
Sidhartha Agrawal, Shaurya Patel, Reto Achermann and Margo Seltzer	2023
OSmosis: No more Déjà vu in OS isolation	arXiv:2309.09291
Sidhartha Agrawal, Reto Achermann and Margo Seltzer	2023
Secure Memory Management on Modern Hardware	arXiv:2009.02737
Reto Achermann, Nora Hossle, Lukas Humbel, Daniel Schwyn, David Cock and Timothy Roscoe	2020
CleanQ: a lightweight, uniform, formally specified interface for intra-machine data transfer	arXiv:1911.08773
Roni Haecki, Lukas Humbel, Reto Achermann, David Cock, Daniel Schwyn and Timothy Roscoe	2019
Cichlid: Explicit physical memory management for large machines	arXiv:1911.08367
Simon Gerber, Gerd Zellweger, Reto Achermann , Moritz Hoffmann, Kornilios Kourtis, Timothy Roscoe and Dejan	2019
MILOJICIC	

A Least-Privilege Memory Protection Model for Modern Hardware	arXiv:1908.08707
Reto Achermann, Nora Hossle, Lukas Humbel, Daniel Schwyn, David Cock and Timothy Roscoe	2019
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines	arXiv:1910.05398
Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe and Jayneel Gandhi	2019
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines (Poster)	OSDI'18:Poster Sessions
Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe and Jayneel Gandhi	2018
Sockeye: Formally Describing Hardware as Seen by Software (Poster)	OSDI'18:Poster Sessions
Reto Achermann, Lukas Humbel, Roni Haecki, David Cock and Timothy Roscoe	2018
Enzian: a research computer for datacenter and rackscale computing (Poster)	OSDI'18:Poster Sessions
David Cock, David Sidler, Muhsen Owaida, Reto Achermann , Tobias Grosser, Zeke Wang, Amit Kulkarni, Alain Denzler,	2018
Adam Turowski, Abishek Ramdas, Anastasiia Ruzhanskaia, Timothy Roscoe and Gustavo Alonso	
Formalizing Address Space Interactions (Poster)	OSDI'16:Poster Sessions
Reto Achermann and Timothy Roscoe	2016

Patents

Transparent Self-Replicating Page Tables in Computing Systems	US20200117612A1
Reto Achermann and Jayneel Gandhi	January 2019
Interoperable capabilities	US20170329526A1
Reto Achermann, Maurice Bailleu, Dejan S. Milojicic and Gabriel Parmer	January 2016
Memory management with versioning of objects	WO2017131789A1
Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan S. Milojicic and Reto Achermann	January 2016

Awards

Intel Best Paper Award	Cache-coherent accelerators for persistent memory crash consistency (HotStorage '22)	2021
EuroSys '21 Shadow PC	Honorable Mention Distinguished Shadow PC Reviewer Award	2021
HiPEAC Paper Award	SpaceJMP: Programming with Multiple Virtual Address Spaces (ASPLOS'16)	2016

Projects

Verus - Verifying Rust Programs	github.com/verus-lang/verus
Verus is a tool to verify rust programs with the focus on system software using SMT solver.	
Velosiraptor - Why program when you can automatically synthesize OS code?	retoachermann.ch

Velosiraptor provides a specification language to express the behavior of translation hardware. Based on the specification, Velosiraptor automatically synthesizes the operating-system code that interfaces with the hardware and correctly configures the translation hardware.

IronSync

IronSync is an automated verification framework for concurrent code with shared memory. Seagull scales to complex systems by splitting system-wide proofs into isolated concerns such that each can be substantially automated. IronSync uses separation logic to split the state machine into shards to enable sound local reasoning

github.com/secure-foundations/iron-sync

Node-Replication Operating System

Scalability and concurrency are notoriously hard. The node-replication operating system (NrOS) simplifies this by leveraging node-replication that automatically makes sequential data structures scalable and concurrent. NrOS maintains replicas of the data structure on each NUMA node and uses an operation log to ensure consistency among replicas.

CleanQ - Lightweight, uniform and formally specified Queues.

CleanQ is a queue specification for intra-machine data transfers. The specification defines the semantics of ownership transfers in Isabelle/HOL. We prove the correctness through a sequence of refinement steps down to the C implementation of a queue, and demonstrate that the resulting implementation is lightweight and observes good performance.

Sockeye - Formally Specifying Hardware as Seen by Software

Sockeye is a framework for accurately representing hardware configurations. Faithful hardware abstractions used by operating systems to represent memory, interrupt, power and clock domain configurations of heterogeneous computer systems and formally define the semantics thereof. With Sockeye, platform-specific operating systems code can be generated (e.g. correct-by-construction page-tables). Sockeye is integrated into the Barrelfish OS.

Mitosis - Page-Table Replication for Big Memory Workloads

Big-memory workloads spend a significant fraction of their runtime serving TLB misses. Walking page tables require up to 24 memory accesses and experience NUMA effects. Mitosis transparently replicates page-tables across sockets to eliminate cross-socket page-table walks. Implementation of Linux kernel extensions and application runtime.

Enzian - A Research Computer

Enzian is a research computer combining a big server-class ARM CPU with a large FPGA connected through the Enzian Coherency Interface (ECI). My work targeted the understanding of the processor's native coherence protocol driving the development of ECI.

Barrelfish Operating System

Barrelfish is a Multikernel-based research operating system developed at ETH Zurich. Part of this project, my work consists of architectural support (Xeon Phi, ARMv8), device drivers (Xeon Phi co-processor, USB, DMA drivers), runtimes (bulk-transport subsystem, OpenMP, multiple-virtual address spaces, Shoal runtime).

Smelt - Machine Aware Message-Passing Primitives

Machine-optimized construction of broadcast and reduction trees as message-passing primitives. Smelt targets multi-core systems. The project work consisted of the design and implementation of the Smelt runtime library including message-passing abstractions.

Shoal - Smart Memory Allocation for NUMA Machines

Automatic optimization of memory allocation for parallel programs (Graph processing in Green-Marl) based on access patterns. Project work consisted of the design and implementation of the memory abstractions, Barrelfish runtime support and support for DMA engines of the runtime.

Scientific Presentations

Why write code when you can synthesize address translations?	June 22, 2023
19TH WORKSHOP ON HOT TOPICS IN OPERATING SYSTEMS	
Fast Local Page Tables for NUMA Servers with Mitosis	June 08, 2021
ICSA Colloquium – University of Edinburgh	
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines	March 19, 2020
25TH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS	
Memory Topology Models and Their Application in Operating Systems	February 25, 2020
Trustworthy Systems, Data 61, CSIRO, Australia.	
Faithful Hardware Representation and Least-Privilege Memory Management in Operating	December 06, 2019
Systems	
Lab for Advanced Systems Research (LASR), University of Texas at Austin, USA	
Realistic Hardware Abstractions and Least-Privilege Memory Management in Operating Systems	November 01, 2019
NETWORKS SYSTEMS AND SECURITY (NSS) I AD HANVERSITY OF PRITICIL COLUMPIA CANADA	

NETWORKS, SYSTEMS, AND SECURITY (NSS) LAB, UNIVERSITY OF BRITISH COLUMBIA, CANADA

nrkernel.systems/

sockeye-project.github.io

github.com/mitosis-project

cleang-project.github.io

barrelfish.org

enzian.systems

github.com/libsmelt

github.com/libshoal

5

Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines	November 30, 2018
Systems Group, ETH Zurich, Switzerland.	
Model based system configuration and tasteful hardware	July 06, 2017
Systems Research Group, University of Cambridge, Cambridge, UK	
Provable Correct Memory Management	April 23, 2017
11TH EUROSYS DOCTORAL WORKSHOP	
Smelt: Machine-aware Atomic Broadcast Trees for Multicores	November 2, 2016
12TH USENIX Symposium on Operating Systems Design and Implementation	

Advised and Mentored Students

UNIVERSITY OF BRITISH COLUMBIA

Phillip Dumitru	Co-Advisor Honours's thesis project. Co-advised with Prof. Alexander Summers Title: <i>Formalization of the OSMosis Isolation Model</i>	September 2023 - April 2024
Brice Michael Wilson	Co-Advisor Honours's thesis project. Co-advised with Prof. Margo Seltzer Title: <i>Profiling Stack Traces in Non-Linux Virtual Machines</i>	September 2022 - April 2023
Ryan Mehri	Mentor directed studies research project.	January 2023 - August 2023
	Topic: Encoding memory models for address translation in an SMT solver.	
Emily Chu	Mentor summer research project.	June 2023 - December 2023
	Topic: Generating translation hardware components for the Arm FastModels simulator.	
David Bromley	Mentor summer research project.	June 2022 - August 2022
	Topic: Formally specifying optimal sparse decision trees (OSDT) in Dafny.	
Sepehr Noorafshan	Mentor summer research project.	June 2022 - August 2022
	Topic: Revisiting device driver synthesis with behavior trees.	
Ilias Karimalis	Mentor summer research project.	June 2022 - August 2022
	Topic: Design and implementation of a DSL to specify translation hardware.	
ETH ZURICH		
Joel Busch	Mentor Master's thesis project.	April 2020 - October 2020
	Title: Detailed Simulation of Enzian's Cache Coherence Protocol	
Thore Goebel	Mentor Bachelor's thesis project.	February 2020 - August 2020
	Title: CleanQ for USB	
Patrick Ziegler	Mentor Bachelor's thesis project.	October 2019 - April 2020
	Title: A Unified Approach to Simulation of Hybrid CPU/FPGA systems	
Jakob Meier	Mentor Master's thesis project.	September 2018 - March 2019
	Title: Tools for Cache Coherence Protocol Interoperability	
Nora Hossle	Mentor Master's thesis project.	March 2018 - September 2019
	Title: Multiple Address Spaces in a Distributed Capability System	
Leo Horne	Mentor Bachelor's thesis project.	February 2019 - August 2019
	Title: Using NetBSD Kernel Components on Barrelfish Through Rump Kernels	

Giuseppe Arcuti	Mentor Bachelor's thesis project. Title: <i>Formally modelling hardware standards</i>	February 2019 - August 2019
Sven Knobloch	Mentor Bachelor's thesis project. Title: <i>System Modeling Co-Design</i>	March 2018 - September 2018
Joel Busch	Mentor Bachelor's thesis project. Title: <i>Device Queues for USB</i>	December 2017 - May 2018
Daniel Schwyn	Mentor Master's thesis project. Title: <i>Hardware Configuration With Dynamically-Queried Formal Models</i>	April 2017 - October 2017
Andrei Poenaru	Mentor Master's thesis project. Title: <i>Explicit OS support for hardware threads</i>	September 2016 - March 2017
David Keller	Mentor Bachelor's thesis project. Title: <i>Dynamic Linking and Loading in Barrelfish</i>	February 2015 - August 2015

Service

EuroSys '25	Program Committee	2025
EuroSys '24	Program Committee	2024
ASPLOS '24	Program Committee	2024
ACM SRC '23	Program Committee	2023
ATC '23	Program Committee	2023
EuroSys '23	Program Committee	2023
ASPLOS '22 (ERC)	Program Committee	2022
ATC '22	Program Committee	2022
IEEE Internet Computing Reviewer		2022
ATC '21	Networking Co-chair	2021
OSDI '21	Networking Co-chair	2021
ATC '21	Program Committee	2021
EuroSys '21	Shadow Program Committee	2021

References

Available on request.